<p>The novel material also shows excellent photothermal efficacy (p = 0.0002) in a 4T1 xenograft mice model. The organic nature of the material coupled with its small size and strong NIRF provides an advantage for bio-elimination and potential clinical image-guided therapy over the inorganic counterparts.Linaridins are members of the ribosomally synthesized and post-translationally modified peptide (RiPP) family of natural products. Five linaridins have been reported, which are defined by the presence of dehydrobutyrine, a dehydrated, alkene-containing amino acid derived from threonine. This work describes the development of a linaridin-specific scoring module for Rapid ORF Description and Evaluation Online (RODEO), a genome-mining tool tailored toward RiPP discovery. Upon mining publicly accessible genomes available in the NCBI database, RODEO identified 561 (382 nonredundant) linaridin biosynthetic gene clusters. Linaridin BGCs with unique gene architectures and precursor sequences markedly different from previous predictions were uncovered during these efforts. To aid in data set validation, two new linaridins, pegvadin A and B, were detected through reactivity-based screening and isolated from Streptomyces noursei and Streptomyces auratus, respectively. Reactivity-based screening involves the use of a probe that chemoselectively modifies an organic functional group present in the natural product. The dehydrated amino acids present in linaridins as α/β-unsaturated carbonyls were appropriate electrophiles for nucleophilic 1,4-addition using a thiol-functionalized probe. The data presented within significantly expand the number of predicted linaridin biosynthetic gene clusters and serve as a roadmap for future work in the area. The combination of bioinformatics and reactivity-based screening is a powerful approach to accelerate natural product discovery.It is very challenging to probe the temperature in a nanoscale because of the lack of detection technique. Temperature-sensitive luminescent probes at a nanoscale provide the possibility to solve this problem. Herein, we fabricated a model, which combined two kinds of temperature sensitive nanoprobes and gold nanoparticle heater within mesoporous silica nanoparticles. Upconverting nanoparticles and quantum dots located at different positions inside 110 nm nanoparticles reported different temperatures when the gold nanoparticles generated heat by 532 nm laser irradiation. The temperature difference between two probes with an average distance of 55 nm can reach about 30 °C. Our results prove that the temperature distribution at a nanoscale can be measured, and it will be noteworthy if a nano-heater is applied.The incorporation of porous supporting materials to prepare shape-stable phase change materials (PCMs) is of great interest in recent years. However, extensive reported composite PCMs are shape-stable in the air atmosphere but neglected in the water environment. To develop shape-stable and waterproof PCMs is important for their outdoor applications but challenging. Herein, we report a novel cellulose nanocrystal/poly(N-isopropylacrylamide) (CNC/PNIPAM) gel-supported hexadecanol (H-anol) PCM with good thermal storage properties and excellent shape stability in both air and water environments. The CNC/PNIPAM hydrogel is prepared through an ultraviolet-induced C═C cross-linking reaction, and its physical structure and mechanical properties are well characterized. H-anol is then directly immerged into the CNC/PNIPAM alcogel by a facile and low-cost solvent-exchange strategy. The mechanism of the solvent-exchange strategy has been established. Because of the temperature-sensitive hydrophilic/hydrophobic transform behavior of the CNC/PNIPAM network, the CNC/PNIPAM/H-anol PCM displays excellent shape stability in a water environment by forming a dense hydrophobic surface, providing it with great potential in all-weather thermal energy storage applications.Microporous carbon has been widely known as a probable material to capture greenhouse gases. <a href="https://www.selleckchem.com/products/canagliflozin.html">Canagliflozin in vivo</a> This work provides a facile synthesis of monodisperse biomass-derived microporous carbon spheres (CSs) for effective CO2 capture. The spheres were synthesized by a novel continuous microfluidic strategy from oil-in-water-in-oil ((O1/W2)/O2) emulsions. O1 nanodroplets could be self-assembled into the cores of micelles, which were formed by chitosan and surfactant F127 in the W2 phase through high-speed liquid-phase shearing. The obtained O1/W2 emulsion can be further sheared into a sphere by the O2 phase. After carbonization, nanodroplet-templated pores shrank to micropores and ultramicropores. The optimal sample showed the developed pore structure with a Brunauer-Emmett-Teller (BET) surface area of 576 m2/g and microporous volume of 0.22 cm3/g. Compared with O1 free CS, the dynamic adsorption capacity of CO2 was improved to 1.20 mmol/g from 0.42 mmol/g. The CO2 capture capacity, cycling stability, isosteric heats, and mass diffusion coefficient of CSs were evaluated as well. The results demonstrate that microporous CSs are promising candidates for CO2 capture with low cost and a green synthesis route, which was achieved via continuous microfluidic strategy using sustainable biomass chitosan as a carbon precursor and droplets as templates.Metal-organic frameworks (MOFs) have aroused great interest as lithium-ion battery (LIB) electrode materials. In this work, we first report that a pristine three-dimensional tetrathiafulvalene derivatives (TTFs)-based zinc MOF, formulated [Zn2(py-TTF-py)2(BDC)2]·2DMF·H2O (1) (py-TTF-py = 2,6-bis(4'-pyridyl)tetrathiafulvalene and H2BDC = terephthalic acid), can work as a high-performance electrode material for rechargeable LIBs. The TTFs-Zn-MOF 1 electrode displayed a high discharge specific capacity of 1117.4 mA h g-1 at a current density of 200 mA g-1 after 150 cycles along with good reversibility. After undergoing elevated discharging/charging rates, the electrode showed superior lithium storage performance in the extreme case of 20 A g-1 and could finally recover the capability when the current rate was back to 200 mA g-1. Particularly, specific capacities of 884.2, 513.8, and 327.8 mA h g-1 were reached at high current densities of 5, 10, and 20 A g-1 after 180, 175, and 300 cycles along with good reversibility, respectively.</p>