Chiral α-substituted allylboronic acids were synthesized by asymmetric homologation of alkenylboronic acids using CF3/TMS-diazomethanes in the presence of BINOL catalyst and ethanol. The chiral α-substituted allylboronic acids were reacted with aldehydes or oxidized to alcohols in situ with a high degree of chirality transfer. The oxygen-sensitive allylboronic acids can be purified via their isolated diaminonaphthalene (DanH)-protected derivatives. The highly reactive purified allylboronic acids reacted in a self-catalyzed reaction at room temperature with ketones, imines, and indoles to give congested trifluoromethylated homoallylic alcohols/amines with up to three contiguous stereocenters.In this work, electron-induced site-specific formation of neutral π-type aminyl radicals (RNH·) and their reactions with pyrimidine nucleoside analogs azidolabeled at various positions in the sugar moiety, e.g., at 2'-, 3'-, 4'-, and 5'- sites along with a model compound 3-azido-1-propanol (3AZPrOH), were investigated. Electron paramagnetic resonance (EPR) studies confirmed the site and mechanism of RNH· formation via dissociative electron attachment-mediated loss of N2 and subsequent facile protonation from the solvent employing the 15N-labeled azido group, deuterations at specific sites in the sugar and base, and changing the solvent from H2O to D2O. Reactions of RNH· were investigated employing EPR by warming these samples from 77 K to ca. 170 K. RNH· at a primary carbon site (5'-azido-2',5'-dideoxyuridine, 3AZPrOH) facilely converted to a σ-type iminyl radical (R═N·) via a bimolecular H-atom abstraction forming an α-azidoalkyl radical. RNH· when at a secondary carbon site (e.g., 2'-azido-2'-deoxyuridine) underwent bimolecular electrophilic addition to the C5═C6 double bond of a proximate pyrimidine base. Finally, RNH· at tertiary alkyl carbon (4'-azidocytidine) underwent little reaction. These results show the influence of the stereochemical and electronic environment on RNH· reactivity and allow the selection of those azidonucleosides that would be most effective in augmenting cellular radiation damage.Meso-free B(III)subchlorin 1 has been realized exclusively for the first time from meso-ethoxycarbonyl-substituted tripyrrane along with the first subchlorin dimer 2 as its μ-oxo analogue via a facile one-pot approach. The subchlorin is highly stable toward oxidation; hence, it was not contaminated with the corresponding subporphyrin analogue 3. The subchlorin (56%) and its dimer (30%) exhibit singlet oxygen generation ability for the first time. The B-O-B dimer displays strong exciton coupling between the two macrocycles.We developed a dissipative particle dynamics (DPD) approach that captures polyalanine folding into a stable helical conformation. learn more Within the proposed native-based approach, the DPD parameters are derived based on the contact map constructed from the molecular dynamics (MD) simulations. We show that the proposed approach reproduces the folding of polypeptides of various lengths, including bundle formation for sufficiently long polypeptides. The proposed approach also allows one to capture the folding of the helical segments of the lysozyme. With further development of computationally efficient native-based DPD approaches for folding, modeling of a range of biomaterials incorporating α-helical segments could be extended to time and length scales far beyond those accessible in molecular dynamics simulations.The field of plasmonics has largely been inspired by the properties of Au and Ag nanoparticles, leading to applications in sensing, photocatalysis, nanomedicine, and solar water treatment. Recently the quest for new plasmonic materials has focused on earth-abundant elements, where aluminum is a sustainable, low-cost potential alternative. Here we report the chemical synthesis of sub-50 nm diameter Al nanocrystals with a plasmon-resonant absorption in the UV region of the spectrum. We observe a transition from a UV-resonant response, that is, a colorless solution, to a broadband absorptive response, that is, a completely black solution, as the nanocrystal concentration is increased. The strong absorptive interband transition in Al provides the dominant mechanism responsible for this effect. We developed a robust method to functionalize Al nanocrystals with silica to increase their stability in H2O from hours to weeks enabling us to observe efficient broadband photothermal heating with these nanoparticles.By combining experimental measurements with ab initio molecular dynamics simulations, we provide the first microscopic description of the interaction between metal surfaces and a low-temperature nitrogen-hydrogen plasma. Our study focuses on the dissociation of hydrogen and nitrogen as the main activation route. We find that ammonia forms via an Eley-Rideal mechanism where atomic nitrogen abstracts hydrogen from the catalyst surface to form ammonia on an extremely short time scale (a few picoseconds). On copper, ammonia formation occurs via the interaction between plasma-produced atomic nitrogen and the H-terminated surface. On platinum, however, we find that surface saturation with NH groups is necessary for ammonia production to occur. Regardless of the metal surface, the reaction is limited by the mass transport of atomic nitrogen, consistent with the weak dependence on catalyst material that we observe and has been reported by several other groups. This study represents a significant step toward achieving a mechanistic, microscopic-scale understanding of catalytic processes activated in low-temperature plasma environments.Functionalized supramolecular cages are of growing importance in biology and biochemistry. They have recently been proposed as efficient auxiliaries to obtain high-resolution cocrystallized proteins. Here, we propose a molecular dynamics investigation of the supramolecular association of sulfonated calix-[8]-arenes to cytochrome c starting from initially distant proteins and ligands. We characterize two main binding sites for the sulfonated calixarene on the cytochrome c surface which are in perfect agreement with the previous experiments with regard to the structure (comparison with the X-ray structure PDB 6GD8) and the binding free energies [comparison between the molecular mechanics Poisson-Boltzmann surface area analysis and the isothermal titration calorimetry measurements]. The per-residue decomposition of the interaction energies reveals the detailed picture of this electrostatically driven association and notably the role of arginine R13 as a bridging residue between the two main anchoring sites. In addition, the analysis of the residue behavior by means of a supervised machine learning protocol unveils the formation of a hydrogen bond network far from the binding sites, increasing the rigidity of the protein.