We report the conversion of amides to carboxylic acids using nonprecious metal catalysis. The methodology strategically employs a nickel-catalyzed esterification using 2-(trimethylsilyl)ethanol, followed by a fluoride-mediated deprotection in a single-pot operation. This approach circumvents catalyst poisoning observed in attempts to directly hydrolyze amides using nickel catalysis. The selectivity and mildness of this transformation are shown through competition experiments and the net-hydrolysis of a complex valine-derived substrate. This strategy addresses a limitation in the field with regard to functional groups accessible from amides using transition metal-catalyzed C-N bond activation and should prove useful in synthetic applications.Magnetic iron oxide nanoparticles (IONPs) have received significant interest for the use in biomedical applications. The assembly of IONPs into larger superstructures has been used to modify the properties and functionality of these particles. click here For example, the clustering of IONPs can lead to improvements in MRI contrast generation, changes in heat generation during magnetic fluid hyperthermia, and alterations to pharmacokinetics and biodistribution. Nevertheless, the IONP clustering leads to significant heterogeneity in the assembly. Here, we demonstrate a method for using DNA origami to precisely control the number and positions of IONPs. We also showed how this technique can be used to module the functionality of IONP clusters by showing how MRI contrast generation efficiency can be tuned by altering the number and spacing of IONPs. Finally, we show that these property changes can be dynamically regulated, demonstrating the possibility for this technology to be used in biosensing applications.In many areas of application, key objectives of chemical separation and analysis are to minimize the sample quantity while maximizing the chemical information obtained. Increasing measurement sensitivity is especially critical for proteomics research, especially when processing trace samples and where multiple measurements are desired. A rich collection of technologies has been developed, but the resulting sensitivity remains insufficient for achieving in-depth coverage of proteomic samples as small as single cells. Here, we combine picoliter-scale liquid chromatography (picoLC) with mass spectrometry (MS) to address this issue. The picoLC employs a 2-μm-i.d. open tubular column to reduce the sample input needed to greatly increase the sensitivity achieved using electrospray ionization (ESI) with MS. With this picoLC-MS system, we show that we can identify ∼1000 proteins reliably using only 75 pg of tryptic peptides, representing a 10-100-fold sensitivity improvement compared with the state-of-the-art liquid chromatography (LC) or capillary electrophoresis (CE)-MS methods. PicoLC-MS extends the limit of separation science and is expected to be a powerful tool for single cell proteomics.In this study, half-sandwich Ru(II) complexes containing acylthiourea ligands of the general type [Ru(η6-p-cymene)(PPh3)(S)Cl]PF6 (1m-6m) and [Ru(η6-p-cymene)(PPh3)(S-O)]PF6 (1b-6b) where S/S-O = N',N'-disubstituted acylthiourea were synthesized and characterized (via elemental analyses, IR spectroscopy, 1H NMR spectroscopy, 13C1H NMR spectroscopy, and X-ray diffractometry), and their cytotoxic activity was evaluated. The different coordination modes of the acylthiourea ligands, monodentately via S (1m-6m) and bidentately via S,O (1b-6b), to ruthenium were modulated from different synthetic routes. The cytotoxicity of the complexes was evaluated in five human cell lines (DU-145, A549, MDA-MB-231, MRC-5, and MCF-10A) by MTT assay. The IC50 values for prostate cancer cells (2.89-7.47 μM) indicated that the complexes inhibited cell growth, but that they were less cytotoxic than cisplatin (2.00 μM). Unlike for breast cancer cells (IC50 = 0.28-0.74 μM) and lung cancer cells (IC50 = 0.51-1.83 μM), the complexes were notably more active than the reference drug, and a remarkable selectivity index (SI 4.66-19.34) was observed for breast cancer cells. Based on both the activity and selectivity, complexes 5b and 6b, as well as their respective analogous complexes in the monodentate coordination 5m and 6m, were chosen for further investigation in the MDA-MB-231 cell line. These complexes not only induced morphology changes but also were able to inhibit colony formation and migration. In addition, the complexes promoted cell cycle arrest at the sub-G1 phase inducing apoptosis. Interaction studies by viscosity measurements, gel electrophoresis, and fluorescence spectroscopy indicated that the complexes interact with the DNA minor groove and exhibit an HSA binding affinity.The application of nanoparticles comprising amphiphilic block copolymers for the delivery of drugs is a subject of great interest as they hold promise for more effective and selective therapies. In order to achieve this ambition, it is of critical importance to develop our understanding of the self-assembly mechanisms by which block copolymers undergo so that we can control their morphology, tune their ability to be loaded with biofunctional cargoes, and optimize their interactions with target cells. To this end, we have developed a strategy by which blends of (biocompatible) amphiphilic block copolymers generate nonspherical nanovectors, simultaneously enhancing drug loading without the need for subsequent purification owing to the use of the biocompatible direct hydration approach. The principal morphology achieved using this blending strategy are wormlike nanovectors (nanoworms, NWs), with an elongated form known to have a profound effect on flow behavior and interactions with cells. Unloaded nanoworms are not toxic toward human retinal (ARPE-19) cells and can be effectively endocytosed even after varying the surface charge. In terms of drug loading, we demonstrate that uptake of dexamethasone (DEX; a clinically relevant therapeutic agent) in nanoworms (DEX@NWs) can be enhanced using this process, increasing drug content up to 0.5 mg/mL (10 wt % in particles). Furthermore, such nanoworms are stable for at least 5 months and are, therefore, a promising platform for nanomedicine applications.