Median WMHv in all patients with AIS was 5.86 cm3 (interquartile range 2.18-14.61 cm3) and differed significantly across CCS subtypes (p less then 0.0001). In multivariable analysis, age, hypertension, prior stroke, smoking (all p less then 0.001), and diabetes mellitus (p = 0.041) were independent predictors of WMHv. When adjusted for confounders, patients with SAO had significantly higher WMHv compared to those with all other stroke subtypes (p less then 0.001). Conclusion In this international multicenter, hospital-based cohort of patients with AIS, we demonstrate that vascular risk factor profiles and extent of WMH burden differ by CCS subtype, with the highest lesion burden detected in patients with SAO. These findings further support the small vessel hypothesis of WMH lesions detected on brain MRI of patients with ischemic stroke.Objective To investigate in vivo whether synaptic loss and neurofibrillary tangle load spatially overlap and correlate with clinical symptoms in patients with amnestic mild cognitive impairment (aMCI). Methods In this cross-sectional study, 10 patients with aMCI and 10 healthy controls underwent triple PET-MRI with 11C-UCB-J (synaptic vesicle protein 2A), 18F-MK-6240 (tau deposition), and 11C-Pittsburgh compound B (β-amyloid) and neuropsychological assessment. Gray matter atrophy was assessed by voxel-based morphometry with T1-weighted MRIs. read more Voxel-wise and volume-of-interest analyses were conducted on PET data. The interrelationship of synaptic density and tau deposition was investigated. We also investigated correlations of 18F-MK-6240 and 11C-UCB-J binding with cognitive performance. Results Compared to controls, patients with aMCI showed a decreased 11C-UCB-J binding mainly in substructures of the medial temporal lobe (MTL; 48%-51%, p cluster = 0.02). Increased 18F-MK6240 binding in the same region was observed (42%-44%, p cluster = 0.0003), spreading to association cortices. In the MTL, higher 18F-MK-6240 binding inversely related to lower 11C-UCB-J binding (p = 0.02, r = -0.76). Decreased performance on cognitive tests was associated with both increased 18F-MK-6240 and decreased 11C-UCB-J binding in the hippocampus (p 0.7), although in a multivariate analysis only 18F-MK-6240 binding was significantly related to cognitive performance. Conclusions Patients with aMCI have high tau deposition and synaptic density loss mainly in key regions known to be involved in early cognitive impairment, indicating that these are interrelated in the MTL, while tau binding had already spread toward association cortices. Longitudinal data are needed to provide further insight into the temporal aspects of this relationship.Salivary amylase, encoded by the AMY1 gene, is responsible for the digestion of carbohydrates. We investigated associations of the AMY1 genetic variations with general and central adiposity changes considering dietary carbohydrate intake among 32054 adults from 4 prospective cohort studies. A genetic risk score (GRS) was calculated based on nine AMY1 single-nucleotide polymorphisms, with higher AMY1-GRS indicating higher activity of salivary amylase. We meta-analyzed interactions between AMY1-GRS and dietary intake for changes in general and central adiposity over 5.5-10 years. We found that carbohydrate food intake significantly altered associations of AMY1-GRS with changes in body mass index (P interaction =0.001) and waist circumference (P interaction less then 0.001). Results were consistent and significant in female cohorts rather than in male cohorts. Among women, higher AMY1-GRS was associated with more increases in adiposity if dietary carbohydrate food intake was high, while higher AMY1-GRS was associated with less gains in adiposity when the dietary intake was low. Also, in a 2-year randomized dietary intervention trial, associations of AMY1-GRS with changes in weight (P interaction =0.023) and waist circumference (P interaction=0.037) were significantly modified by carbohydrate intake. Our results suggest the importance of precision nutrition strategies considering participants' genetic adaptation to carbohydrate-rich diets in regulating general and central adiposity.Although hyperlipidemia is traditionally considered a risk factor for type-2 diabetes (T2D), evidence has emerged from statin trials and candidate gene investigations suggesting that lower LDL-C increases T2D risk. We thus sought to more comprehensively examine the phenotypic and genotypic relationships of LDL-C with T2D. Using data from the UK Biobank, we found that levels of circulating LDL-C were negatively associated with T2D prevalence (OR=0.41[0.39, 0.43] per mmol/L unit of LDL-C), despite positive associations of circulating LDL-C with HbA1c and BMI. We then performed the first genome-wide exploration of variants simultaneously associated with lower circulating LDL-C and increased T2D risk, using data on LDL-C from the UK Biobank (n=431,167) and the GLGC consortium (n=188,577), and T2D from the DIAGRAM consortium (n=898,130). We identified 31 loci associated with lower circulating LDL-C and increased T2D, capturing several potential mechanisms. Seven of these loci have previously been identified for this dual phenotype, and 9 have previously been implicated in non-alcoholic fatty liver disease. These findings extend our current understanding of the higher T2D risk among individuals with low circulating LDL-C, and of the underlying mechanisms, including those responsible for the diabetogenic effect of LDL-C-lowering medications.The COVID-19 pandemic has prompted unprecedented global disruption. For medical schools, this has manifested as examination and curricular restructuring as well as significant changes to clinical attachments. With the available evidence suggesting that medical students' mental health status is already poorer than that of the general population, with academic stress being a chief predictor, such changes are likely to have a significant effect on these students. In addition, there is an assumption that these students are an available resource in terms of volunteerism during a crisis. This conjecture should be questioned; however, as those engaging in such work without sufficient preparation are susceptible to moral trauma and adverse health outcomes. This, in conjunction with the likelihood of future pandemics, highlights the need for 'pandemic preparedness' to be embedded in the medical curriculum.